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Abstract—With the popularity of intelligent terminals and the
advances of mobile Internet, carpooling service, which reduces
the travel cost of each user by allowing multiple users to
share one car, has received considerable attention and make
our life more convenient. However, the vigorous development of
carpooling services still faces severe challenges in users’ location
or route privacy. In this paper, we propose an efficient and
privacy-preserving route matching scheme called TAROT for
carpooling services. With TAROT, users can enjoy high-quality
carpooling services while without revealing sensitive location and
route information. Specifically, based on a Goldwasser-Micali
based Equality Determination algorithm, we design an Accurate
Similarity Computation algorithm, which allows users to get
accurate carpooling results over ciphertexts. Meanwhile, the Re-
verse Minhash method is also designed to construct a Dissimilar
Route Filter algorithm, which can filter out dissimilar routes
in advance and reduce computational costs and communication
overheads. Security analysis shows that TAROT can protect
users’ location privacy. In addition, TAROT is also evaluated
with many random maps, and the simulation results demonstrate
that TAROT is highly-efficient.

Index Terms—Carpooling service, location based service (LBS),
privacy preservation, route matching.

I. INTRODUCTION

IT has been witnessed for the last decade that shared
services have great impact on our daily lives and flourished

around the world. As one of the typical shared services,
carpooling service has become much more popular [1], [2].
A study has showed that by 2026, 13 percent of people will
choose carpooling [3]. Meanwhile, more and more profes-
sional carpooling applications are extensively applied world-
wide, e.g., BlaBlaCar covers 22 countries with 90 million
members [4], and Waze has 140 million users worldwide [5].
Compared with traditional taxiing, carpooling is more econom-
ical and environmentally friendly. A conceptual architecture of
carpooling service is shown in Fig. 1, which shows that users
can find suitable carpooling partners to travel together without
reducing the quality of the trip to save expenses.

In carpooling services, each user needs to submit a car-
pooling query to the service provider, which contains sensitive
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Fig. 1. Conceptual architecture of carpooling service.

location information such as starting point, destination, travel
route, and others. Obviously, once the location privacy is
leaked, the life and property of the user would be threat-
ened [6], [7]. For instance, Singaporean ride-hailing giant Grab
had just been fined for its fourth data privacy leakage since
2018 [8]. Ride-hailing app Didi has been banned off from
app stores because it is found to have severely violated the
laws by illegally collecting and using personal information [9].
In addition, the GDPR became enforceable beginning May
25, 2018, which enables individuals to control their personal
data [10]. Furthermore, the California Privacy Rights Act
of 2020 shall become operative on January 1, 2023, which
limits businesses’ usage of sensitive personal information,
e.g., precise geolocation [11]. Therefore, significant challenges
have been brought to the popularization and promotion of
carpooling services.

To protect users’ sensitive location information in location
based service (LBS), a variety of privacy-preserving tech-
nologies have been proposed, which are respectively designed
based on the anonymization strategy and cryptographic prim-
itives. The anonymization strategy based ones include spatial
cloaking, location obfuscation, and dummy. Spatial cloaking

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:41:58 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-3742-9698
https://orcid.org/0000-0002-5853-633X
https://orcid.org/0000-0003-4534-5670
https://orcid.org/0000-0002-1604-1953
https://orcid.org/0000-0001-5720-0941
https://orcid.org/0000-0001-8310-7169


2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3168661, IEEE Internet of
Things Journal

2

technology [12]–[14] constructs a cloaking area where the
user is located, and there are at least k − 1 other users
in the cloaking area. It is difficult for the service provider
to distinguish the location and identity of the user from
the cloaking area. Location obfuscation technology [15]–[19]
reduces the accuracy of location by adding noise to protect
the privacy of location. Dummy technology [20]–[23] protects
location privacy by generating false location data along with
the true location data to obfuscate an adversary. However,
these technologies based on generalization and obfuscation
make it impossible for service providers to obtain the accu-
rate location. Thus, users cannot enjoy accurate LBS. The
cryptographic primitives based ones include homomorphic
encryption [24]–[30], secure multiparty computing [26], [31],
[32], private set intersection [27], [33], and others, which
can provide accurate LBS for users. However, cryptography-
based techniques usually involve a large number of complex
operations. Therefore, they are not applicable for ciphertext
computation among a large number of data items. Thus,
existing solutions suffer from either accuracy or efficiency
issues and are not applicable to implement carpooling services.

Aiming at addressing these issues, in this paper, we propose
an efficient and privacy-preserving route matching scheme for
carpooling services, named TAROT. Specifically, our contri-
butions are threefold.

• First, TAROT achieves accurate route matching in car-
pooling services without leaking users’ location informa-
tion. Specifically, we design a Goldwasser-Micali based
Equality Determination algorithm (GMEDA), and based
on GMEDA, an accurate similarity computation algo-
rithm (ASCA) is proposed to compute the similarity in
ciphertext accurately. Therefore, TAROT can protect the
privacy of users’ sensitive locations.

• Second, TAROT improves the carpooling matching ef-
ficiency significantly. Specifically, we design a Reverse
Minhash (RM) method and an RM based Jaccard similar-
ity. Based on them, we construct a dissimilar route filter
algorithm (DRFA) to efficiently filter dissimilar routes,
which can greatly reduce the number of route matching.

• Third, TAROT is effective and efficient in carpooling
dataset. We implement TAROT by Python, and deploy
it in carpooling dataset with different parameter selection
to evaluate its performance. The results show TAROT is
effective and efficient in terms of computational costs and
communication overheads.

The remainder of this paper is organized as follows. First
of all, we formalize the system model and security model in
Section II. Second, some preliminaries used in our work are
introduced in Section III. Then, we give some building blocks
and the details of TAROT in Section IV and Section V, respec-
tively. After that, security analysis is described in Section VI.
Next, parameter selection is described in Section VII. Later,
experimental evaluation is described in Section VIII. Finally,
we review some related works in Section IX and draw our
conclusion in Section X.
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① Initialization.

② Send carpooling
query token.

③ Send carpooling
group result.

Carpooling Service
Provider (CSP)

Fig. 2. System model under consideration.

II. SYSTEM MODEL AND SECURITY MODEL

In this section, we formalize our system model and security
model.

A. System Model

In the system model, we mainly focus on how to provide
an accurate and efficient privacy-preserving carpooling service
for carpooling users. As shown in Fig. 2, our system model
consists of two kinds of entities: carpooling users (CUs) and
carpooling service provider (CSP).

• CUs: Each CU is equipped with an intelligent terminal
with public parameters from CSP, through which CU
can launch carpooling query requests to CSP. The query
request is specified by a set of routes from the same
starting point to the same destination, which means CU
intends to ride from the starting position to the desti-
nation. Each route in query request consists of a few
location points and the number of location points in a
route depends on the starting point and destination. To
reduce the cost, he/she prefers to use carpooling services.
Meanwhile, considering the privacy of the starting point
and destination, CUs demand to send the query request
to CSP in an encrypted form.

• CSP: CSP is equipped with a workstation and is re-
sponsible for initializing the system by generating public
parameters. After initialization, it will offer carpooling
query services to CUs. In our scheme, we consider that
all CUs in the current timestamp simultaneously launch
carpooling query requests to CSP. On receiving these
query requests in an encrypted form, CSP computes the
similarity of the corresponding routes in different query
requests on ciphertext by some cryptographic techniques.
Then, CSP groups CUs based on these similarities and
returns the carpooling group result to CUs. It is worth
noting that CSP finishes the carpooling query requests
processing with the assistance of CUs.

B. Security Model

In the security model, we consider that both CSP and CUs
are honest-but-curious [34]. Specifically, the CSP will honestly
follow our scheme to offer carpooling query services to CUs
but may be curious about the plaintext location and route
information of CUs. For CUs, each of them also honestly
follows our scheme to launch carpooling query requests to the
CSP. However, since it assists the CSP to process the query
requests and may have a chance to access some ciphertexts
related to other CUs’ location and route information, they may
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attempt to obtain the plaintext location and route information
of other CUs. In the realistic carpooling system, the location
information cannot be protected between CUs who match
successfully. Therefore, it is not practical to prevent CSP
from colluding with CU to steal other CUs’ private location
information. Since our target is to protect sensitive data of
CUs in carpooling, some attacks such as collusion attack and
data pollution attack are currently out of scope of this paper
and will be considered in future work.

III. PRELIMINARIES

In this section, we review some preliminaries used in
TAROT, which serve as the basis of our TAROT scheme.

A. Jaccard Similarity and Route Similarity
In this section, we introduce the definition of Jaccard

similarity [35] and route similarity considered in our scheme.

Definition 1 (Jaccard Similarity). Let U be a complete set,
and A,B be two subsets of U . The Jaccard similarity between
A and B is defined as the ratio of their intersection size to
union size, i.e.,

ϕ(A,B) = |A ∩ B|
|A ∪ B|

. (1)

Definition 2 (Route Similarity). In our scheme, each route is
represented by a set with several locations, which also can be
regarded as a vector. Meanwhile, the similarity between two
routes is measured by Definition 1.

B. Goldwasser-Micali (GM) Algorithm
Goldwasser-Micali (GM) algorithm [36] is a probabilistic

public key encryption algorithm that encrypts only one bit
at a time and has a homomorphic property of exclusive OR
operation. Specifically, the GM algorithm is defined as follows.

• KeyGen(κ): Given a security parameter κ, the key gen-
eration algorithm first selects two random prime numbers
p, q such that |p| = |q| = κ, and let n = p × q.
Then, it chooses an integer g such that g is quadratic
nonresidue modulus n. Finally, it outputs the public key
pk = (n, g), the private key sk = (p, q), and the message
space M = {0, 1}.

• Enc(m, pk): A message m ∈M can be encrypted by pk
as c = Enc(m) = gm × r2 mod n, where r ∈ Z∗

n is a
random number.

• Dec(sk , c): On input sk and c, the decryption algorithm
first computes the Jacobi symbol ( c

n ) = ( cp )(
c
q ) to

determine whether c is a quadratic residue or not. Then,
if c is a quadratic residue, it means that m = 0. If c is
quadratic nonresidue, it means m = 1.

The GM algorithm satisfies the exclusive OR homomorphic
property, i.e., Enc(m1)× Enc(m2)→ Enc(m1 ⊕m2).

IV. BUILDING BLOCKS

In this section, we propose a GM based Equality Determina-
tion algorithm (GMEDA) and a Reverse Minhash (RM) based
Jaccard similarity, which will serve as the building blocks of
our proposed scheme. Some notations will be used throughout
the scheme. These notations and their corresponding defini-
tions are shown in TABLE I.

TABLE I
COMMON NOTATIONS IN TAROT

Notation Definition

ι The total number of location points on the map.
ki The total number of CUi’s routes.
Pi The route vector set of CUi.
pi,u The uth route vector in Pi.
ϕ The Jaccard similarity.
ψ The RM based Jaccard similarity.
Ψ The matrix composed of ψs.
Λ The RM function tuple.
λt The tth RM function in Λ.
τ The number of RM functions in Λ.
si,u The RM vector of pi,u.
sti,u The tth RM value of si,u.
Si The RM vector tuple of Pi.

A. GM Based Equality Determination Algorithm (GMEDA)
To determine whether two location points are identi-

cal, based on the GM algorithm, we design a privacy-
preserving equality determination algorithm named GMEDA.
The GMEDA is run between two users CUi and CUj , who
respectively hold two integers A and B. They run the GMEDA
to determine whether A = B or not, as Alg. 1. In the GMEDA,
to simplify the description, we use JK to represent Enc().
Meanwhile, JK is also used to represent the ciphertext of an
integer.

In the GMEDA, CUi generates public and private keys
(pk i, sk i) ← KeyGen(κ) and publishes pk i. It expresses
A in binary as A = (a1, a2, . . . , al) and computes JAK =
(Ja1K, Ja2K, . . . , JalK) with pk i. Then, it sends JAK to CUj .
On receiving JAK, CUj expresses B in binary as B =
(b1, b2, . . . , bl) and computes JBK = (Jb1K, Jb2K, . . . , JblK)
with pk i. After that, it computes the Hadamard product of
JAK and JBK and gets JAK ◦ JBK = (Ja1K × Jb1K, Ja2K ×
Jb2K, . . . , JalK × JblK). Next, CUj gets JAKJBK by randomly
permutating the elements in JAK ◦ JBK. This is the key to
achieving privacy preservation. Later, CUj sends JAKJBK to
CUi. Finally, CUi decrypts each element of JAKJBK with sk i

in turn. Once a decryption result is 1, CUi gets A ̸= B.
Otherwise, CUi gets A = B. Finally, CUi returns the result
to CUj .

B. RM Based Jaccard Similarity
In this section, we introduce an RM based Jaccard similarity

ψ to measure the similarity between two routes, which is larger
than ϕ and will be used for dissimilar route filter in TAROT.
Before introducing RM, we briefly describe MinHash [37].
MinHash can be directly used to compute route similarity
efficiently. The hash values of routes obtained by MinHash
are all points on the routes, which will lead to the data
leakage of sensitive locations of CUs. Therefore, we design
RM based on MinHash to solve the problem of privacy leakage
in the process of efficient route similarity computation. In the
following, we first introduce RM, and based on it, define RM
based Jaccard similarity.
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1: procedure ENC ▷ CUi

2: (pk i, sk i)← KeyGen(κ) ▷ public and private key
3: A← (a1, a2, . . . , al) ▷ express A in binary
4: JAK← (Ja1K, Ja2K, . . . , JalK) ▷ encrypt A with pk i

5: send JAK to CUj

6: procedure MULTIENC ▷ CUj

7: B ← (b1, b2, . . . , bl) ▷ express B in binary
8: JBK← (Jb1K, Jb2K, . . . , JblK) ▷ encrypt B with pk i

9: JAK◦JBK← (Ja1K×Jb1K, Ja2K×Jb2K, . . . , JalK×JblK)
10: JAKJBK← randomly permutate JAK ◦ JBK
11: send JAKJBK to CUi

12: procedure GETEQUALITY ▷ CUi

13: for e ∈ JAKJBK do
14: if Dec(sk i, e) = 1 then
15: send A ̸= B to CUj

16: if all Dec(sk i, e) = 0 then
17: send A = B to CUj

Alg. 1. GMEDA.
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Fig. 3. Example of RM vector generation.

1) RM: Suppose that there are ι location points on the
map, and each location has a serial number ζi. Let Λ =
(λ1, λ2, . . . , λτ ) denote τ different RM functions, and each λt
is a random permutation of (ζ1, ζ2, . . . , ζι). Let pi,u and pj,v
denote two routes of CUi and CUj consisting of the location
serial numbers.

Then, CUi can represent the route pi,u to an RM vector
si,u according to Λ. The phase of generating one RM vector
is clearly illustrated in the example shown in Fig. 3. Assume
ι is 100, τ is 8, and ζs are represented by consecutive integers
0 to 99. Λ is randomly generated. CUi labels all numbers in
Λ belonging to pi,u and finds the first number among the re-
maining unlabeled numbers in each λ as the RM value. These
RM values will form RM vector si,u = [s1i,u, s

2
i,u, . . . , s

τ
i,u].

Similarly, CUj can represent the route pj,v to an RM vector
sj,v according to Λ.

2) RM Based Jaccard Similarity: Based on the RM vectors,
we can formally define RM based Jaccard similarity. Then, we
prove that the new similarity is larger than Jaccard similarity.

Definition 3 (RM Based Jaccard Similarity). Let pi,u and
pj,v be two route vectors. CUi first generates the RM sti,u
according to λt, and CUj generates stj,v . The RM based
Jaccard similarity of pi,u and pj,v is defined as the probability

bj,v 0 0 0 0 1 0 0 1 1 . . .

bi,u 0 0 1 1 1 0 1 0 1 . . .

x̊yz z̊ z̊ ẙ ẙ x̊ z̊ ẙ ẙ x̊ . . .

Fig. 4. Concrete example of the relationship between points in two routes.

of sti,u = stj,v , i.e.,

ψ(pi,u, pj,v) = Pr[sti,u = stj,v]. (2)

Let si,u = [s1i,u, s
2
i,u, . . . , s

τ
i,u] and sj,v = [s1j,v, s

2
j,v, . . . , s

τ
j,v]

be the RM vectors of pi,u and pj,v . According to Chebyshev’s
inequality, when τ → ∞, the frequency and probability are
equal almost surely, i.e.,

lim
τ→∞

1

τ

τ∑
t=1

∣∣sti,u − stj,v∣∣0 a.s.
=== Pr[sti,u = stj,v].

Therefore, with the appropriate τ ,

ψ(pi,u, pj,v) =
1

τ

τ∑
t=1

∣∣sti,u − stj,v∣∣0.
Theorem 1. ψ is greater than ϕ.

Proof. For the convenience of description, we only consider
λt and two route vectors pi,u and pj,v , which belong to CUi

and CUj . According to pi,u and λt, a new vector bi,u is
constructed. The length of bi,u is the same as that of λt, both
of which are ι. Each element in bi,u is 0 or 1. When an element
of λt exists in pi,u, the element of bi,u in the same position is
1. Otherwise, it is 0. Intuitively, bi,u reorders pi,u according
to the relative positions of elements in λt. According to pj,v
and λt, the vector bj,v can be obtained.

There may be three cases of elements at the same position
of bi,u and bj,v . Both are 1, one is 0, one is 1, and both are 0.
These three cases are marked as x̊, ẙ, and z̊. In addition, the
number of occurrences of these three situations is denoted as
x, y, and z. For the convenience of description, an example of
actual values as shown in Fig. 4 is given. The corresponding
location point where the first 0 element in bi,u or bj,v is
located is sti,u or stj,v . Therefore, event sti,u = stj,v can also
be expressed as, in vector x̊yz , there is no ẙ before z̊. It
can be easily obtained that the probability of sti,u = stj,v is
Pr[sti,u = stj,v] = z/z+y. According to (2), ψ = z/z+y. The
size of the union is x + y, and the size of the intersection is
x. According to (1), ϕ = x/x+y. For any route, the elements
it owns are only a small part of all the location points on the
map, so z must be greater than x. So far, we have ϕ = x/x+y,
ψ = z/z+y, and z > x. It is easy to get that

ψ − ϕ =
z

z + y
− x

x+ y
=

(z − x)y
(z + y)(x+ y)

> 0.

Therefore, ψ is greater than ϕ.

V. OUR PROPOSED SCHEME

Based on GMEDA and RM based Jaccard similarity, in
this section, we propose an efficient and privacy-preserving
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Fig. 5. Example of hierarchical map.

route matching scheme, i.e., TAROT, including five processes:
initialization, query token generation, dissimilar route filter,
accurate similarity computation, and CU grouping. In addition,
TAROT can easily be extended to multiple routes.

A. Initialization

In the initialization phase, CSP and CUs generate public
and private keys. In TAROT, all maps are hierarchical as
shown in Fig. 5. When the routes are cross-city, the map
is a national map, and locations on the map are generally
cities or towns. If it is a trip within a city, then the map
is a city map, and locations on the map are generally vital
such as intersections or business centers. A hierarchical map
will keep the number of location points on the route within a
reasonable range. In short, CSP has a map with ι locations.
Each location has a serial number ζi. All ι location points
with serial numbers are stored in a list L. The map distances
between all location points on the map are stored in a matrix
D. Each element di,j ∈ D represents the map distance
between ζi and ζj , where the map distance is defined as the
actual map distance between two location points rather than
a straight line distance. After that, CSP generates τ different
RM functions Λ = (λ1, λ2, . . . , λτ ). At last, CSP publishes
public parameters L, D, and Λ. Regarding CUs, each CUi

first chooses a security parameter κ and generates the public
key and private key as (pk i, sk i) ← KeyGen(κ). Then, it
publishes the public key pk i.

B. Query Token Generation

For general CUs, given a starting point and a destination,
multiple routes can be generated by common K-Shortest
Path (KSP) algorithms, such as Yen’s algorithm [38]. In
addition, some CUs with personalized needs will consider
the requirements such as road conditions and stay points
when generating routes. At this time, both KSP algorithm
and distance matrix [39] can help CUs generate routes in this
process. In other words, CUi generates the corresponding route
vector set Pi = {pi,1, pi,2, . . . , pi,ki

} locally. Pi includes ki
shortest routes from starting point to destination, where each
route pi,u is a vector. For each route pi,u in Pi, CUi first
generates the RM vector si,u according to Λ for u ∈ [1, ki]
and sends the RM vector tuple Si = (si,1, si,2, . . . , si,ki

) as
the carpooling query token to CSP.

1: procedure COMPSIM ▷ compute ψs between CUs
2: for i← 1, 2, . . . , n do
3: for j ← i+ 1, i+ 2, . . . , n do
4: compute ψi,j

5: procedure GENSIMMATRIX ▷ generate Ψ matrix
6: for i← 1, 2, . . . , n do
7: for j ← 1, 2, . . . , n do
8: if i < j then
9: Ψ[i][j]← ψi,j

10: else if i = j then
11: Ψ[i][j]← 1
12: else if i > j then
13: Ψ[i][j]← ψj,i

14: procedure GENCANDCU ▷ generate candidate CUs
15: for i← 1, 2, . . . , n do
16: ξi ← a few larger ψs in ith line of Ψ
17: return candidate CUs tuple

Alg. 2. DRFA.

C. Dissimilar Route Filter

On receiving all carpooling query tokens, CSP compares
the routes between any two CUs using the RM based Jaccard
similarity. It further finds dissimilar routes and filters them.
The DRFA is shown in Alg. 2. First, CSP computes a similarity
matrix Ψ between CUs, where each element is

ψi,j = max
u∈[1,ki],v∈[1,kj ]

ψ(pi,u, pj,v).

Then, CSP generates candidate CUs tuple. For each Pi, CSP
selects a few route vector sets whose ψs are larger than
others. As shown in Theorem 1, ψ is greater than ϕ. CSP
filters smaller ψ, i.e., smaller ϕ is filtered. These ψs’ owners
are candidate CUs for CUi marked as ξi, i.e., ϕs between
CUi and CUs in ξi are very likely to be large. The same
operation is performed for each CU, and candidate CUs tuple
Ξ = (ξ1, ξ2, . . . , ξn) is obtained at the end.

D. Accurate Similarity Computation

In this process, we accurately compute similarities between
each CU and its corresponding candidate CUs. The direction
of the two routes is not considered, and it is easy to judge
whether the directions are equal by the GMEDA.

To complete accurate similarity computation, we propose
an ASCA based on the GMEDA. Specifically, ASCA consists
of four steps: 1) CUi encrypts points; 2) CUj encrypts points;
3) CUi gets common points; and 4) CUi computes ϕi,j . The
pseudocode of the ASCA is shown in Alg. 3. In the following,
the four steps for the ASCA are described in detail.

CUi encrypts points. Suppose there are ϵi location points
in Pi. CUi generates a set Θi = {θ1i , θ2i , . . . , θ

ϵi
i }, which

is the set of location points passed by all the route vectors
of CUi. Then, CUi performs GMEDA encryption on each
element in Θi to generate the corresponding ciphertext set
JΘiK = {Jθ1i K, Jθ2i K, . . . , Jθ

ϵi
i K}. Finally, CUi sends JΘiK to

CUj .
CUj encrypts points. CUj first generates Θj from Pj and

computes JΘKi,j = JΘiKT JΘjK. Then, we define a hash
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1: procedure ENCPOINTS ▷ CUi encrypts points
2: Θi ← all points in Pi

3: JΘiK← use GMEDA encrypt Θi

4: send JΘiK to CUj

5: procedure ENCPOINTS ▷ CUj encrypts points
6: Θj ← all points in Pj

7: Γj ← hash points in Θj by hash function Hj

8: P ′
j ← hash points in Pj by hash function Hj

9: JΘjK← encrypt Θj using GMEDA
10: JΘKi,j ← JΘiKT JΘjK
11: send JΘKi,j , Γj , and P ′

j to CUi

12: procedure COMMONPOINTS ▷ CUi gets common points
13: Γ∩

i,j ← decrypt JΘKi,j to get common points
14: procedure GETSIM ▷ CUi computes ϕi,j
15: ϕi,j ← compute ϕs from Γ∩

i,j , Pi, and P ′
j

16: send ϕi,j to CSP

Alg. 3. ASCA.

function Hj that hashes θvj ∈ Θj to γvj ∈ Z∗
n. After that,

CUj hashes Θj according to Hj to obtain Γj and hashes the
location point serial numbers in Pj to obtain P ′

j . Finally, CUj

sends JΘKi,j , Γj , and P ′
j to CUi.

CUi gets common points. Firstly, CUi uses the GMEDA to
decrypt JΘKi,j to get whether each pair of location numbers are
equal. In order to improve the efficiency of decryption, CUi

decrypts each element in each row/column in turn. When the
decrypted results of a certain row/column are equal, continue
to decrypt the next row/column value. Finally, CUi can learn
the points that CUi and CUj owned in common. In other
words, combining Γj , CUi gets a set

Γ∩
i,j = {θui ↔ γvj | θui = θvj , u ∈ [1, ϵi], v ∈ [1, ϵj ]}

that contains some pairs related to the same location points.
CUi computes ϕi,j . According to Γ∩

i,j , Pi, and P ′
j , CUi

can determine whether the points on each pair of routes are
equal. Then, CUi can compute the similarity between each
two route vectors which are belong to Pi and Pj respectively
for all routes. To clearly describe how CUi computes ϕi,j , we
give an example in the following that CUi computes a pair of
routes, such as pi,u and pj,v . In order to compute ϕ(pi,u, pj,v),
CUi counts how many elements in Γ∩

i,j appear in both pi,u and
p′j,v . Combined with the length of pi,u and p′j,v ,

ϕ(pi,u, pj,v) =
|Γ∩

i,j ∩ pi,u ∩ p′j,v|
|pi,u|+ |p′j,v| − |Γ∩

i,j ∩ pi,u ∩ p′j,v|

can be computed. CUi computes the similarity between CUi

and CUj , i.e., ϕi,j = maxu∈[1,ki],v∈[1,kj ] ϕ(pi,u, pj,v), and
sends it to CSP.

The same operation is performed on each CU and corre-
sponding candidate CUs. Finally, CSP has a matrix Φ that
stores the similarity between all CUs.

E. CU Grouping

In this process, CSP can use Φ to provide CU grouping
results for CUs in any appropriate way.

In our scheme, two simple CU grouping strategies are de-
scribed below. One strategy is Largest Similarity First (LSF),
which always selects the largest element in Φ at present. This
strategy is mainly to ensure global optimization, prioritizing
the most suitable carpooling partners. Another strategy is First
In First Out (FIFO), which always selects the first CU in Φ to
enter the system at present. This strategy mainly ensures that
CU can get a service response in time. When a pair of the
carpooling partner is selected, the rows and columns where the
carpooling partners are located will be removed. Repeat this
process, and successful matching carpooling partners will be
produced in pairs. If the largest ϕ in Φ is lower than a certain
threshold, the matching process of this round can be stopped.
The remaining unsuccessfully matched CUs will compute the
similarities in the subsequent matching process.

Furthermore, the above two strategies are relatively simple.
In practical application, these two strategies can be combined
to consider the whole and the individual’s benefits jointly. For
example, based on LSF policy, the weight of entry order is
added for each CU, and the weight of CUs who enter earlier
is higher. Therefore, a new coefficient is defined by combining
similarity and order weight. Two suitable CUs with the largest
new coefficient are selected for matching each time. Such a
strategy ensures that the similarity of successful matching CUs
is high enough and makes it possible that no CU cannot find
a suitable matching CU all the time.

F. Extension

In the description above, all the route computations involved
are two routes. However, TAROT can easily be extended
to multiple routes. The Jaccard similarity is extended to
the ratio of intersection and union of multiple routes. Two
core algorithms in TAROT, DRFA and ASCA, are extended
respectively.

DRFA. Similar to the description of the relationship between
ψ and ϕ in Theorem 1, there may be three cases of elements
at the same position of routes in binary, all are 1, some are 0,
some are 1, and all are 0. These three cases are marked as x̊,
ẙ, and z̊. In addition, the number of occurrences of these three
situations is denoted as x, y, and z. ψ = z/z+y and ϕ = x/x+y

can also be obtained. There still exists ψ > ϕ. Therefore, the
DRFA is still valid for multiple routes.

ASCA. There is no essential difference between similarity
computation between multiple routes and two routes. The
ASCA will call the GMEDA to compare the points in the
routes. The similarity computation process is consistent with
that on the plaintext. Therefore, the ASCA can run among
multiple routes.

In summary, TAROT supports similarity computation
among multiple routes. In practical application, CU can choose
the number of CUs that can share a car. At this time, it is
necessary to compute the similarity between multiple routes.

VI. SECURITY ANALYSIS

In this section, we analyze the security of TAROT. Since
dissimilar route filter and accurate similarity computation are
two key processes of TAROT, we show the security of TAROT
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by respectively proving that dissimilar route filter and accurate
similarity computation are privacy-preserving.

In some previous work, the starting points and the destina-
tions are often the private information that attackers want to
steal [6], [18], [25], [26]. In addition, since the stay points are
location points chosen by CU, they are likely to be sensitive
locations. Therefore, in TAROT, we consider that the starting
points, destinations, and stay points of CU are all privacy
information. In other words, if the starting points, destinations,
and stay points of CU can be restored, then we believe that
privacy has been leaked. On the contrary, if the starting points,
destinations, and stay points of CU cannot be restored, then
we believe that privacy is protected. In TAROT, CUi and CUj

will complete the similarity computation with the help of CSP.

A. Security Analysis of Dissimilar Route Filter

Based on the security model of our scheme, we prove
that the dissimilar route filter process is privacy-preserving,
keeping CUs’ location secret from the honest-but-curious CSP.
Since CSP knows the value of Λ, it can determine whether sti,u
is the first element in λt. If sti,u is the first element of λt, CSP
can only learn that sti,u is the point that CUi did not pass. If
sti,u is not the first element of λt, the elements before sti,u are
the points where CUi passes. Therefore, the CSP can obtain
the passing points and non-passing points of CUi. However,
it still has no idea on CUs’ location from these information
as shown in Theorem 2.

Lemma 1. The CSP has no idea on CUs’ starting points,
destinations, and stay points based on the leaked passing
points in dissimilar route filter.

Proof. First, we only consider the privacy leakage caused by
λt and pi,u. Let svi,u be the (X + 1)th element in λt. The
X elements before svi,u are the points that CUi passes. If the
length of pi,u is assumed to be ρ, X ∈ {0, 1, 2, . . . , ρ− 1, ρ}.
The probability of the number of leakage passing points is

Pr[X = k] =

(
ρ
k

)(
ι
k

) · ι− ρ
ι− k

=
ρ!(ι− k)!(ι− ρ)
ι!(ρ− k)!(ι− k)

,

where
(
ρ
k

)
is the symbol of ρ choose k. For λt and pi,u, the

number of passing points that will leak on average is

E(X) =

ρ∑
k=0

k · Pr[X = k] =
ρ

ι− ρ+ 1
.

Accordingly, the variance

Var(X) = E(X2)− E2(X) =
ρ(ι− ρ)(ι+ 1)

(ι− ρ+ 2)(ι− ρ+ 1)2
.

This means that if one λ acts on pi,u, there will be E(X) points
leaking. Let Xt represent the number of leakage passing points
caused by λt, then E(Xt) = E(X) and Var(Xt) = Var(X).
Let Sτ =

∑τ
v=1Xt, µ = E(Xt), and σ =

√
Var(Xt). Apply-

ing the central limit theorem, Sτ−τµ/
√
τσ approximately obeys

standard normal distribution N (0, 1). Applying the three-
sigma rule of thumb, we have Pr[Sτ ⩽ τµ+

√
τσ] ≈ 0.84134,

Pr[Sτ ⩽ τµ+2
√
τσ] ≈ 0.97725, and Pr[Sτ ⩽ τµ+3

√
τσ] ≈

0.99865.
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Fig. 6. Distribution related to the number of one CU’s unique points.

TABLE II
THRESHOLD OF DIFFERENT ρ UNDER THREE-SIGMA RULE OF THUMB

ρ 20 35 50 65 80

τµ+
√
τσ 1.51 2.31 3.08 3.84 4.60

τµ+ 2
√
τσ 2.34 3.42 4.43 5.40 6.35

τµ+ 3
√
τσ 3.17 4.53 5.77 6.95 8.10

τµ+
√
τσ/ρ 7.53% 6.61% 6.17% 5.91% 5.75%

τµ+2
√
τσ/ρ 11.68% 9.78% 8.86% 8.30% 7.94%

τµ+3
√

τσ/ρ 15.83% 12.95% 11.55% 10.69% 10.12%

Only one route is considered in the above analysis. How-
ever, there are ki routes for CUi. These routes are generated
by the KSP algorithm or distance matrix with the same starting
point, destination, and stay points. Most of the points in these
routes are repeated. Because we analyze the passing points, it
is meaningless to compute separately and repeatedly count for
multiple routes. Therefore, multiple routes can be considered
as a longer route when analyzing the leakage of passing points.

In order to get the number of unique points in each
CU’s route vector set, we performed a simulation. In our
simulation, 10 000 CUs were randomly generated. 15 routes
were generated for each CU. The number of unique points in
each CU’s route vector set is counted, and the histogram is
shown in Fig. 6.

Here, we use specific values directly, i.e., ι = 1200 and τ =
40. In order to show privacy leakage of passing points more
intuitively, we computed the passing points range of different ρ
in TABLE II. We can see that there are no more than 6 passing
points of leakage with 84.134% probability, no more than 8
passing points with 97.725% probability, and no more than
10 points with 99.865% probability. The theoretical value will
be on the high side because we do not consider the repetition
of elements when we compute Sτ . Combined with the value
range of ρ, CSP cannot restore the starting points, destinations,
and stay points.

Lemma 2. The CSP has no idea on CUs’ starting points,
destinations, and stay points based on the leaked non-passing
points in dissimilar route filter.

Proof. We analyze the leaked private information of non-
passing points in detail. Every leaking non-passing point is
an RM value, i.e., sti,u, which is produced by λt acting on

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:41:58 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3168661, IEEE Internet of
Things Journal

8

TABLE III
NUMBER OF LEAKED NON-PASSING POINTS ON AVERAGE

ki 10 11 12 13 14 15

E(Y ) 340.3 368.5 395.8 422.1 447.6 472.3

E(Y )/ι 28.4% 30.7% 33.0% 35.2% 37.3% 39.4%

the route vector pi,u. Since every λ is randomly generated,
we think that sti,u is randomly selected from λt. The number
of λ in Λ is τ . For pi,u, τ RM values are generated. There
are ki routes for CUi. The points that each route produces
without passing through may be different, so ki routes need
to be considered. Therefore, for CUi, to get the total number
of leaking non-passing points, in fact, it is to compute how
many unique values are taken out by randomly taking one
value from each of ki · τ λs.

In short, there are ι numbers, and each number is different.
We randomly select a number with equal probability each time
and record it, and repeat this process ki · τ times. Note that
the number that has been selected before can continue to be
selected. That is to say, for each selection, the probability
of each number being selected is 1/ι. There may be cases
where some numbers are equal among these selected numbers.
Repeated numbers are deleted, and a set of unique elements
are obtained. Finally, the amount of numbers obtained is Y .
The Y value obtained by the above process is the number
of leaked points that have not passed. The probability of the
number of leakage non-passing points is

Pr[Y = k] =

{
ki·τ
k

}
· P(ι, k)

ιki·τ
=

ι!
k∑

i=0

(−1)i(k−i)ki·τ

i!(k−i)!

ιki·τ (ι− k)!
,

where
{
ki·τ
k

}
is the symbol of Stirling numbers of the second

kind which counts the number of ways to partition a set of ki·τ
elements into k nonempty subsets, and P(ι, k) is the number
of ι-permutations of k. For CUi, the number of non-passing
points that will leak on average is

E(Y ) =

ki·τ∑
k=0

k · Pr[Y = k] =
ι!

ιki·τ

ki·τ∑
k=0

k
k∑

i=0

(−1)i(k−i)ki·τ

i!(k−i)!

(ι− k)(ι− k − 1)!
.

It can be seen that there are three values ki, ι, and τ , that
affect the value of E(Y ). For a more intuitive description here,
for ι and τ , we use specific values directly, i.e., ι = 1200
and τ = 40. We select the appropriate value of ki, i.e.,
ki ∈ {10, 11, 12, 13, 14, 15}. In order to show privacy leakage
of non-passing points more intuitively, we computed the
number of leaked non-passing points on average of different
ki in TABLE III. We can see that the leaked non-passing
points account for about 28% to 40% of all points on the
map. According to the rules for generating points that are not
leaked, we can know that these points are randomly distributed
on the map. Through these points, CSP cannot restore CU’s
routes. That is to say, CSP cannot restore the starting points,
destinations, and stay points of CU.

Theorem 2. The CSP has no idea on CUs’ starting points,
destinations, and stay points in dissimilar route filter.

Proof. The privacy leakage of passing points and non-passing
points is analyzed in Lemma 1 and Lemma 2. As shown
in TABLE II and TABLE III, CSP gets 5.75% to 15.83%
of CUi’s all possible route points and the points that CUi

has not passed, which account for 28% to 40% of the map.
For a single CU, only through these information, CSP cannot
analyze CU’s starting points, destinations, and stay points.
As for the joint analysis of multiple CU data, such as CUi

and CUj . In order to perform joint analysis, ϕi,j needs to be
large so that CSP can synthesize the information of CUi and
CUj to get more information. CSP can compute ψi,j from
Si and Sj . Owing to ψi,j > ϕi,j , the larger ψi,j will not
reflect the real ϕi,j , and the smaller ψi,j can infer that ϕi,j
is smaller. However, the smaller ϕi,j has no meaning for the
joint analysis. Therefore, the joint analysis cannot analyze the
starting point, destination and stay points. In summary, CSP
cannot obtain the starting point, destination and stay points of
CU in dissimilar route filter.

B. Security Analysis of Accurate Similarity Computation

Based on the security model of our scheme, we prove
that the accurate similarity computation process is privacy-
preserving, keeping CUs’ location secret from the honest-but-
curious CSP as shown in Theorem 3.

Theorem 3. The CSP has no idea on CUs’ starting points,
destinations, and stay points in accurate similarity computa-
tion.

Proof. The ASCA we designed is wholly based on the
GMEDA. In the ASCA, the data in TAROT is converted
to the format in the GMEDA, and the result is computed
interactively. The security of the ASCA is entirely equivalent
to the security of the GMEDA. The security of GMEDA and
GM algorithm is consistent. The specific security analysis of
the GM algorithm can be found in [36]. Therefore, CU in
accurate similarity computation cannot obtain the privacy of
each other and CSP also cannot obtain the starting point,
destination, and stay points of CU.

VII. PARAMETER SELECTION

In the above description of TAROT, some operating pa-
rameters involved in some parts have not been determined.
Specifically, it includes three parameters: 1) number of λs;
2) number of routes selected by each CU; and 3) number of
candidate CU selected by each CU. Next, we have to determine
the selection of each parameter in turn through simulation. In
order to make the simulation more general, 30×40 rectangular
map is used in this section. The distance between the points
on the map is randomly generated.

A. The Number of RM Functions

In our simulation, 40 CUs are randomly generated. The
ki value generated by each CU is taken as 5, 10, 15, . . . , 100
respectively.
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Fig. 7. Influence of different numbers of RM functions on similarity.

According to Theorem 1, the minhash method mentioned in
Theorem 1 and the RM method use the same hash functions.
Owing to the minhash method can accurately compute the
Jaccard similarity, evaluating the number of hash functions
used in the minhash method is more reasonable. The number
of hash functions obtained is also the number of the RM func-
tions. Each similarity between each pair of CUs is computed
separately by the minhash method and the definition method in
Definition 1. In addition, the Root Mean Square Error (RMSE)
is computed between the two sets of data computed by these
two methods. Obviously, the smaller the RMSE, the more
accurate the similarity computed by the minhash method.In
Fig. 7, we conducted four repeated experiments.

Finally, we can find that starting from the number of RM
functions taking 40, the RMSE basically no longer changes.
Therefore, we will choose 40 as the number of λs in the
subsequent simulation.

B. The Number of Routes for Each CU

More routes will significantly bring in more overheads.
Therefore, balancing between a larger similarity and a smaller
computational costs is necessary.

In our simulation, 20 CUs are randomly generated, and each
CU generates ki routes to compute the similarity. These 20
CUs generate a 20 × 20 similarity matrix. According to the
principle of LSF, each CU is assigned a matching CU, and at
the same time, each CU gets a corresponding similarity value.

As shown in Fig. 8, 16 independent repeated experiments
are performed, and each experiment generates a new map, new
CUs, new starting points, new destinations, and new routes.
For each curve in Fig. 8, the horizontal axis represents the
number of routes generated by each CU. At the same starting
point and destination, ki takes from 1 to 25 in sequence. The
ordinate represents the mean of the similarity obtained by these
20 CUs under a certain number of routes.

Therefore, under the conditions of this simulation, we can
point out that each CU can take 15 routes to achieve higher
similarity with lower computational costs.

C. The Percentage of Candidate CUs for Each CU

In order to study the situation under different CU numbers,
we tested 6 different numbers of CUs. As shown in Fig. 9,
the numbers of CU pairs are 45, 190, 435, 780, 1225 and
1770. Each CU generates 15 routes to compute the similarity.
According to the principle of LSF, each CU is assigned
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Fig. 8. Influence of different numbers of routes for each CU on similarity.

a matching CU, and at the same time, each CU gets a
corresponding similarity value. So far, we have a vector of
which each element is the similarity of the corresponding CU.
This vector is used as a benchmark vector to select the number
of candidate CUs.

For each curve in Fig. 9, it represents an independent
repeated experiment. The abscissa represents the percentage
of candidate CUs selected by each CU, that is, the ratio of the
number of candidate CUs to the total number of CUs. Under
the corresponding number of candidate CUs, the computed
similarity value of each CU can form a vector. The ordinate
value is the RMSE between this vector and the benchmark
vector. The smaller the ordinate value, the better the matching
effect. This means the closer to the matching result obtained
from the original true similarity matrix.

Therefore, under the conditions of this simulation, we can
point out that each CU can take 20% of the candidate CUs to
achieve closer to the true similarity with lower computational
costs.

VIII. EXPERIMENTAL EVALUATION

In this section, the leakage of passing and non-passing
points in dissimilar route filter is evaluated, and performance
evaluation is performed in terms of computational costs and
communication overheads.

A. Simulation Environment

In order to make the simulation more convenient, we used
Python 3 for programming. We use workstations to simulate
CSP and CUs’ terminals. The workstations are equipped
with Intel® Xeon® Silver 4110 Processor (2.10GHz), which
are connected through IEEE 802.11ac WLAN. The security
parameter in the GMEDA, i.e., the bit length of n, is 1024.

B. Evaluation of Leaked Points in Dissimilar Route Filter

In the analysis of Theorem 2 and Theorem 3, the computed
results are upper limit rather than the exact value. In order
to evaluate the leakage of passing and non-passing points in
dissimilar route filter in practice, extensive experiments are
conducted.

In order to evaluate the number of leaked passing points,
100 random maps of 30×40 are generated. In each map, there
are 300 random CUs. Each CU generates 15 original routes
and uses 40 λs to generate the corresponding RM route vector.
The theoretical and observed value of the number of leaked
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(a) The number of CU pairs is 45.
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(b) The number of CU pairs is 190.
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(c) The number of CU pairs is 435.
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(d) The number of CU pairs is 780.
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(e) The number of CU pairs is 1225.
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(f) The number of CU pairs is 1770.

Fig. 9. Influence of different numbers of candidates for each CU on similarity.
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Fig. 10. Leaked passing points produced by different numbers of points.
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Fig. 11. Leaked non-passing points produced by different numbers of routes.

passing points is shown in Fig. 10. It can be seen that the
theoretical value is close to the observed value.

In order to evaluate the number of leaked non-passing
points, 100 random maps of 30× 40 are generated. There are
500 random CUs on each map. Each CU generates 10, 11,
12, 13, 14 and 15 original routes and uses 40 λs to generate
the corresponding RM route vector. The theoretical value and
observed value of the number of leaked non-passing points is
shown in Fig. 11. It can be seen that the observed value is
far less than the theoretical value, averaging a little more than
40. Owing to most of a CU’s routes are very similar, which
cannot be considered quantitatively in our theoretical analysis.

Combining Theorem 2, Theorem 3, and the above evalua-
tion, we know that CUs’ starting points and destinations are
protected.

C. Computational Costs

In terms of computational costs in TAROT, we mainly
focus on the computational costs of the CU side. In CU route
generation and accurate similarity computation, there are many
computations on the CU side.

In the CU route generation process, CU will generate two
different forms of routes, namely the original route and the
RM route vector. We tested the runtime and communication
data generated by multiple CUs. The experiment is still using
a 30× 40 random map to randomly generate a corresponding
number of CUs, and each CU generates 15 original routes.
40 λs are used to generate the corresponding RM route
vector. As shown in Fig. 12a, in the route generation process,
for each CU, the most time-consuming is the original route
generation algorithm. In this part, we use the Yen’s algorithm,
which can be optimized or replaced by a more efficient KSP
algorithm in practical applications. The runtime in the RM
vector generation part is very short and can be almost ignored.

In accurate similarity computation, we propose the GMEDA
and apply it to our ASCA. In the ASCA, CUi and CUj

communicate via CSP relay twice. Assuming that CUi is
the party initiating communication, CUi will perform two
computations, and CUj will perform one computation. The
runtime of these three computations and the initial step is
shown in Fig. 12b. The initial step is used to generate
public and private key pairs. CUi can compute the first step
immediately after generating the routes, and it only needs to
be computed once for each CU. The computation time of the
initial, first, and second steps is completely negligible. The
second step requires CUj to complete the computation. The
third step computation performed by CUi is relatively the
most time-consuming. On average, the third step between a
pair of CU takes 400ms. In addition, due to the introduction
of the DRFA, the actual amount of computation required for
accurate similarity computation is greatly reduced. Therefore,
on the whole, the computational costs of TAROT is completely
acceptable.
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Fig. 12. Computational costs in TAROT.

D. Communication Overheads

In TAROT, there are actually two types of communication
processes without considering CSP forwarding communica-
tion. One is communication between CUs and CSP, and the
other is communication between CUs. The former occurs after
CU generates the routes, and CU needs to send the RM
route vectors to CSP. The latter occurs in the process of
computing the accurate similarity, and CUs perform interactive
computations to complete accurate similarity computation.
During this period, there will be two communications between
each pair of CUs.

In the CU route generation step, each CU will generate
15 routes and generates 40 RM route vectors according to
40 λs. Finally, the 40 RM route vectors are sent to CSP as
a carpooling query token. We test the size of multiple CUs’
query token packets and plot the data. As shown in Fig. 13a,
the communication overheads of CU’s carpooling query token
are not large.

In the accurate similarity computation process, for a pair of
CUi and CUj , there are two communications. Assuming that
CUi is the initiator of the interaction, CUi encrypts the points
passed in 15 routes and sends them to CUj . CUj fuses the
passing points of his 15 routes with the ciphertext of each point
sent by CUi. Finally, CUj sent it to CUi. We test the sum of the
data of multiple CUs and plot the data. As shown in Fig. 13b,
the second communication volume is much larger than the first
communication volume. Nevertheless, it is acceptable.

IX. RELATED WORK

In this section, we introduce some privacy-preserving tech-
nologies in ride scenes. At present, there are mainly carpooling
(ride-sharing) and ride-hailing.

Ride-sharing. He et al. [25] designed a selection mechanism
based on spatial region. With the help of encrypted trips of
drivers and passengers, the ride-sharing server determines the
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Fig. 13. Communication overheads in TAROT.

appropriate ride-sharing partners, which saves the expenses
of passengers and drivers. Goel et al. [18] proposed a ne-
gotiation based model, which can hide the exact location
information data for system participants, and at the same time,
implement privacy-preserving ride-sharing. Use the concept
of imprecision, i.e., imprecision of the user’s position in the
set of n positions, and follow the idea of confusion, that is,
higher inaccuracy and higher privacy. Ni et al. [40] proposed
an anonymous mutual authentication protocol to solve the
contradiction between safety and privacy preservation by using
BBS+ signature. In anonymous mutual authentication proto-
col, passengers and drivers can verify each other’s identities
without revealing their actual identities, but they can display
their membership in trusted groups. Hallgren et al. [32]
proposed a ride-sharing model for privacy-preserving. The
secure multiparty computation technology for location and
trajectory matching is developed, so that the third party can be
trusted. Users can learn about the ride segments they can share,
but they cannot get anything about the locations of other users.
Aı̈vodji et al. [26] proposed a privacy-preserving protocol for
ride-sharing, which solved the matching problem of dynamic
ride-sharing systems. Depends on secure filtering protocols to
compute feasible matches. Sherif et al. [6] proposed a privacy-
preserving scheme for ride-sharing. Similarity measurement
technology is used for encrypted data to protect the privacy
of travel data. The server can measure the similarity of users’
travel data, and find users that can be shared without knowing
the real data. Pagnin et al. [27] proposed a simple yet powerful
method which represent a private set intersection on trips as
sets of consecutive road segments, and kept time preference
without relying on third parties.

Ride-hailing. Yu et al. [28] proposed a secure comparison
protocol to efficiently optimize the schedules of taxis over
encrypted data which can protect the location privacy of
both riders and taxis in online ride-hailing (ORH) services.
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TABLE IV
COMPARISON AMONG OUR TAROT SCHEME AND OTHER

PRIVACY-PRESERVING CARPOOLING SCHEMES

TAROT [25] [18] [40] [32] [26] [6] [27]

Accuracy ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓

Map Distance ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗

Efficiency Filter ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

User Role Convertible1 ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓

Aiming at Travel Saving ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

1 User can be either a driver or riders, which is more general.

Wang et al. [41] proposed two efficient and secure spatial
query algorithms for ORH service. All location-related data
are encrypted by its owner before being sent out and are
calculated without decryption during the spatial query process.
Xie et al. [42] used a distance calculation technique to securely
compute the user distance while protecting the location privacy
of both riders and drivers in ORH services. Luo et al. [29]
designed a scheme to estimate the shortest distances between
riders and drivers in road networks approximately without
revealing the location privacy of riders and drivers in ORH
services. Yu et al. [30] used the modified Paillier cryptosystem
to compute approximate road distance over encrypted data in
ORH services and designed a secure comparison method to
compare two distances over ciphertexts without revealing the
actual distances.

We selected seven prior works about privacy-preserving
carpooling and compared them with our scheme from the
five key aspects: accuracy, map distance, efficiency filter, user
role convertible, and aiming at travel saving. As shown in
TABLE IV, in these aspects, TAROT has advantages. Different
from existing ride-sharing or ride-hailing schemes, two route
matching algorithms are proposed to balance efficiency and
accuracy in TAROT. On the premise of ensuring the accuracy
of similarity computation, the computational costs and com-
munication overheads are significantly reduced.

X. CONCLUSION

In this paper, we propose an efficient and privacy-preserving
route matching scheme for carpooling services on a large scale,
called TAROT. TAROT archives carpooling services without
leaking CUs’ accurate location and route information based
on our proposed DRFA and ASCA. Specifically, before being
sent out, all of the location and route related data were masked
into ciphertexts by its owner and were computed without
decryption during the carpooling query process. Therefore,
CSP cannot obtain CUs’ sensitive information, and each CU
cannot obtain other sensitive information. Meanwhile, the
proposed scheme significantly improved the carpooling query
efficiency based on the DRFA. Detailed security analysis
showed its privacy-preserving ability, and extensive experi-
ments demonstrated its efficiency.

XI. AVAILABILITY

The implementation of the proposed scheme and relevant
information can be downloaded at https://www.xdzhuhui.com
/demo/TAROT/.
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